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- CHAPTER I 

"Because the measurement of the global gravity is a primary objective for both 
solid-earth dynamics and ocean dynamics and is an important secondary objective 
for continental geology, the determination of an improved gravitational field 
through space measurement should be an objective of highest priority for the 
1980's." 

-The Space Science Board, A Strategy for 
Earth Science from Space in the 198O's, the 
National Academy of Sciences, Washington, 
D.C.. [ 19821. 

In the early 198O's, NASA proposed a Geopotential Research Mission 

(GRM) to globally determine high precision gravitational and magnetic fields of 

Earth with advanced science techniques using full Earth coverage, polar orbiting 

satellites. These detailed fields are required for the improvement of Earth's 

mathematical models that help scientists to understand the geodynamical activities 

which are continually evolving the Earth's internal and external structure and the 

dynamics of the Oceans that influence Ocean circulation and global climates. In 
addition, the measurement of the geopotential to high degree and order will improve 

orbit determination of other geodectic satellites. 

Currently, three senarios exist for recovering the higher degree and order 

coefficients of Earth's gravity potential. The first senario, described as the "low- 

low'' configuration, consists of two coplanar, low altitude, polar orbiting, satellites 

(Figure 1.1) that measure the Earth's gravity anomalies through range-rates derived 

from the Satellite-to-Satellite Tracking system, SST (discussed in Section 1.3) 

1 
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[Keating et af,  19861. The second senario consists of a single low altitude, polar 

orbiting satellite equipped with a high precision gravity gradiometer sensor 

onboard. The third senario, described as the "high-low" configuration, consists of a 

high altitude satellite along with a low altitude, polar orbiting, satellite. This high- 

low configuration was also designed to use a Satellite-to-Satellite Tracking system 

(SST) for measuring Earth gravity anomalies [Holmes et al, 19871. 

Each low altitude satellite in any case is "drag-free-", which means that orbital 

effects due to nonconservative forces such as drag and solar radiation pressure are 

offset by means of a Disturbance Compensation System (DISCOS) that 

appropriately fues thrusters to offset the effects due to these disturbances. The 

DISCOS is discussed in more detail in Section 1.4 and Chapter 4. 

The orbital requirements of the low-low gravity mission also satisfy the 

orbital requirements for the magnetic mission. Therefore, the lead low-low satellite 

will measure the Earth's magnetic fields with the use of onboard scalar and vector 

magnetometers. 

To properly plan for this mission, a high precision (true) orbit simulation of 

the low-low GRM satellite mission was performed at the University of Texas at 

Austin using the Cray X-MP/24 supercomputer. With this orbit simulation and a 

nominal orbit simulation that was fitted to the true orbits in a least squares sense, 

the geodetic science community will be able to test gravity evaluation techniques 

that are essential to recovering a geopotential of high degree and order. In addition, 

a simulation of the DISCOS system was also performed to assist in the planning for 

the mission. Therefore, the purpose of this report is: 1) to present a simulation 

study of a proposed GRM mission by numerically integrating a high precision orbit 

for each low-low satellite using a geopotential with coefficients up to degree and 

order 360 and calculating the SST's one-way Doppler range-rate measurements, 2) 
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to present a nominal orbit simulation of the aforementioned case with differences 

between the true and nominal ephemerides kept within specified limits, and 3) to 

develop a thruster control algorithm which simulates the DISCOS system so that 

fuel expenditure and thruster-on times can be studied. Since each of the 

aforementioned senarios contain a low altitude segment, the techniques used to 

analyze the low-low senario wil l  be applicable to all three senarios. 

1.1 Descrbtion of the Low-Low Scenario for the 

GeoDote ntial Researc h Mission 

As proposed by Keating et al, [1986], the GRM mission that was once 

referred to as GRAVSAT/MAGSAT, is configured using two 160 km altitude, 

polar orbiting, drag-fiee satellites in coincident, near circular orbits with the 

longitude of the ascending node equal to go', and the mean argument of periapse 

equal to 90'. In spite of perturbations due to the oblateness, the nature of the orbits 

is such that the mean argument of periapse is constant, a "frozen orbit" [White, 

19871. The minimum mission lifetime goal was set at 6 months to achieve high 

resolution (1' by 1') groundtrack coverage of Earth which will result in an 

equatorial spacing of approximately 111 km . The SST onboard will use an 

integrated one-way Doppler system to calculate the line of sight range-rates between 

the satellites which will have separation distances of 100 km to 600 km. A 

Disturbance Compensation System (DISCOS) will keep the satellites essentially 

"drag-free" by controlling radial, along-track and cross-track thrusters to negate the 

effects due to drag and solar radiation pressure, so that high sensitivity to the 

Earth's gravity field will be achieved [Keating et al, 19861. 
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It is desired that the groundtrack of each satellite repeats after a certain 

number of days that are not commensurate with the orbital period. The number of 

days required for the groundtrack repeat determines the resolution of global 

coverage. 

While in a frozen orbit the mean orbital ellipse will not change its eccentricity 

or orientation in space. This means that each satellite will fly over the same location 

on Earth at nearly the same altitude, and their respective perigee location will remain 

fixed over the north pole. 

The GRM launch date is currently proposed for sometime in the period 

1993-95. After launching one of NASA's Space Shuttles into polar orbit from the 

Western Space and Missile Center, the Remote Manipulator Unit (RMU) will 

deploy the two satellites from the Space Shuttle's cargo bay. At a nominal altitude 

of 275 km, both satellites will be deployed in the same orbital plane but separated 

by 50 km. Then after several Hohman transfers and daily checkouts, the satellites' 

are lowered to the 160 km altitude with a separation of 150 km to begin mission 

operations 168 hours after deployment. 

The orbits of the spacecraft will be determined by tracking observations 

provided by the Defense Mapping Agency (DMA) with NASA's Tracking Data 

Relay Satellite System (TDRSS), the Global Positioning System, the TRANET 

ground based tracking network, or a subset of these techniques. 

At the start of the mission with 1400 kg of hydrazine fuel aboard to power 

the DISCOS and attitude control thrusters, the leading satellite would have a mass 

of 2734 kg while the trailing satellite has a mass of 2517 kg. This mass difference 

is due to a boom that canies the magnetometers, and star cameras which maintain 

the spacecraft's orientation in space that are included on the lead spacecraft. Each 

satellite has a frontal area of 1.06 m2 and an expected drag coefficient of 3.5. The 

\ 
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external and internal configurations of the lead GRM satellite are shown 

respectively in Figures 1.2 and 1.3. 

J.2 The DISCOS System 

The atmosphere at 160 km is dense enough to cause rapid orbit decay. If 

drag effects are not counteracted, each satellite's lifetime would be less than 3 days 

[Holmes et al, 19871. Since the density of Earth's atmosphere is directly related to 

the current solar activities such as the amount of solar flux received by the Earth, it 

can not be easily predicted. Furthermore, since drag and solar radiation pressure 

would corrupt the science data, a DISCOS system will be used aboard the low 

altitude spacecraft to ensure that these disturbances are kept to a minimum. This can 

be achieved by firing thrusters to contain an inner satellite "proof mass" within a 

cavity at the satellite's centroid. 

Eventually, the outer portion of the satellite drops in altitude because of drag 

and moves ahead of the proof mass, thus causing the proof mass to move aft with 

respect to the center of mass of the outer satellite. Upon the proof mass's approach 

to a deadband threshold, the corresponding thrusters fire on the outer satellite until 

the proof mass has a predetermined velocity with respect to the satellite's mass 

center. Relative to the outer satellite, the proof mass then moves foward until drag 

causes the relative velocity of the proof mass to become zero and then reverses 

direction. The proof mass then approaches the deadband threshold again and a 

control limit cycle is maintained. This steady-state condition involves relatively 

short firing pulses and relatively long non-thrusting coast arcs. The details of this 

DISCOS system are presented later in Chapter 4. 

f .  
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J.3 The -S ateuite-tesate Ute Trackiqg Svstem 

Line-of-sight relative range-rates between the two satellite are provided by 

the Satellite-to-Satellite Tracking System. With this system, each satellite's 

transmitter continuously transmits millimeter radio signals at 42 GHz and 91GHz to 

each other. These frequencies were chosen to keep errors due to ionospheric effects 

below the limit necessary to satisfy the accuracy requirements [Kearing et al, 

19861. 

As the pair of sateelites approach and pass a gravity anomaly, variations in 

the motion of the satellites are first induced on the lead satellite and then on the 

trailing satellite. As a result, the relative velocity between the satellites varies, from - 
1.0 d s  to + 1.0 m/s. The variation in velocity, referred to as the relative range-rate, 

is an indirect measure of the gravity anomalies. The range variations are measured 

by the Doppler-shift of the frequency of the received signal when compared to a 

reference signal provided by a 5 MHz oscillator [Kean'ng et al, 19861. 

1.4 Reauirements of GRM 

The Satellite-to-Satellite Tracking system is required to measure the relative 

velocities between the antennae on each spacecraft to better than 1 pm / sec. This 

requirement is essential for the recovery of the gravity field, so that at an altitude of 

160 km the data set would provide resolutions of at least 1-2 mgal(1 mgal = 10-5 

d s 2 )  in gravity anomalies, and 5-10 cm in geoid height with a spatial resolution of 

100 km. These resolutions are recommended by national scientific communities for 

the study of geological features such as sedimentary basins, batholiths, mountain 
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ranges, subduction zones and shields [Kearing et af, 19861. Also, the magnetic 

field will be resolved to 1 nT (nanotesla) at a 100 km spatial resolution [Kearing et 

al, 19861. The orbit determination accuracy (30) requirements for the gravity 

mission are 100 meters in the radial direction and 300 meters in the along- and 

cross-track directions, whereas the magnetic mission requires an accuracy of 60 m 

in the radial direction, and 100 m in the along- and cross-track directions [Kearing, 

et al, 19861. 

1.5 0 rganization 

The research presented in this work covers details of the high precision and 

nominal orbit simulations which are discussed in Chapter 2. Chapter 2 also 

describes the mathematical formulae, software and hardware used for the generation 

of each simulation. The results of this study are shown in Chapter 3. The DISCOS 

instrument is discussed along with its history and implementation with GRM in 

Chapter 4. Also explained in Chapter 4 is the Drag-free Thruster Control Algorithm 

that contains all the control logic to operate DISCOS along with all the mathematical 

formulae, force models, software, and hardware that are used to simulate it. The 

results of this study are also presented in Chapter 4. The conclusions of this report 

are discussed in Chapter 5. 
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Figure 1.3 The Internal Confguration of the Lead GRM Satellite 

[Keating et al, 19861. 



CyAPTFR II 

SIMLJLATIONOFGRM 

Two orbit simulations were performed for GRM. The first simulation 

consisted of a high precision representation of the actual orbits of the proof masses 

inside the cavities of the two low altitude satellites described in Chapter 1. The 

second simulation consisted of nominal orbits of the two 'inner' satellites 

determined by least squares approximation of the actual orbits. 

The high precision 'true' orbit was generated using an Ohio State University 

gravity field complete to degree and order 360 [Rapp, 19861, referred to as the 

"OSU86F" field. The ephemerides of the two low altitude satellites were generated 

at 4 second intervals for 32 solar days. Satellite-to-satellite line-of-sight range-rates 

measured by each spacecraft's integrated one-way Doppler antenna are also 

included in this simulation. The initial conditions of each satellite orbit were 

especially designed so that their groundtracks repeat after 32 sidereal days [White, 

19871. This 32 sidereal day repeating groundtrack results in exactly 525 orbital 

revolutions for each satellite. Therefore, the orbital period is not commensurate with 

the repeat period so that high resolution coverage of Earth's gravity field can be 

achieved (lo by lo). To concentrate on the effects due to high degree and order 

terms in Earth's gravitaional field, the gravitational effects due to the Sun or Moon 

were not included in the force model nor were effects due to kinematic or temporal 

forces. To keep computer costs low and maintain extreme accuracy, the KSG 

[Lundberg, 19841 fixed-mesh multi-step integrator was used along with the Encke 

11 
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formulation of the differential equations. Furthermore, to avoid singularities at the 

Earth's poles, Pines' [1973] formulae that uses direction cosines rather than 

spherical coordinates were used to evaluate the geopotential. 

The nominal orbit includes the ephemerides of the two proof masses estimated 

by performing a least squares fit to the true ephemerides plus the estimated range- 

rates between the two 'inner' satellites. The nominal orbit was generated using a 

modified Goddard Earth Model 10B (GEM10B) gravity field that includes 

coefficients to degree and order 36 with the zonals J2 and J3 and the first two pairs 

of resonant coefficients at orders 16, 17, 33, 49, and 82 adjusted [White, 19871. 

The initial conditions of the nominal orbits were especially designed for this 

simulation to maintain low radial, transverse and normal (RTN) differences 

between the true and nominal orbits (residuals), but its 32 sidereal day mission was 

not required to repeat [White, 19871. The University of Texas Orbit Processor, 

UTOPIA, along with the Encke formulation of the differential equations and Pines 

[1973] formulation of the geopotential were used to generate the nominal orbit 

simulation. 

This chapter contains the mathematical foxmulae that model the motion of each 

GRM satellite in orbit about a non-spherical Earth. Section 2.1 presents the 

equations of motion that describe the orbit of each satellite and the force model that 

perturbs the satellites' motion. Pines [ 19731 foxmulation of the Geopotential is 

explained in Section 2.1.1. Increased numerical accuracy is obtained through the 

use of the Encke integration method which is presented in Section 2.1.2. The initial 

conditons for both the true and nominal simulations are discussed in Section 2.2. 

Section 2.3 lists the parameters that describe the Encke reference orbits. The gravity 

models are discussed in Section 2.4. The Integrated One-way Doppler Range-Rate 



13 

computer algorithm that simulates the Satellite-To-Satellite Tracking system is 

presented in Section 2.5. The equations of motion are integrated efficiently, saving 

computer costs with the use of the KSGFS numerical integration algorithm 

described in Section 2.6. Finally, the specifications of the Cray X-MP/24 

supercomputer used to numerically integrate the satellites' orbits is described in 

Section 2.7. 

The orbit of each satellite is modeled by Newton's Law of Gravitation which 

states that the force due to mass attraction between two point masses M and m 

separated by a distance r is given by the product of the masses, divided by the 

square of the distance and multiplied by a gravitational constant, G, or 

GMm 

r 
F=- 

2 

By cancelling the satellite's mass (m) from both sides of Equation (2.1) and 

adding a perturbative force, the equations governing the motion of each satellite are 

p f -  

r 
r = - - + f  (2.2) 3 

where 
- 
r = the position vector of the satellite as referenced to a nonrotating, 

geocentric coordinate system, such as defined by a mean epoch of 

2000, 

p. = the gravitational parameter of Earth, 
f = the perturbing force due to nonsphericity of Earth. 
- 
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The proof mass will be susceptible to only conservative gravitational forces. 

Only the gravitational forces due to the Earth's static potential were examined The 

forces due to third-body effects from the sun or moon, temporal effects from land 

and Ocean tides, kinematic effects from precession, nutation, polar motion and UT1 

variations were not included in this model because they would complicate the 

gravity evaluation techniques. Nonconservative forces such as drag and solar 

radiation pressure, likewise, will not effect the proof mass because of the DISCOS 

system. The gravitational force is derived from the gradient of the Earth's potential, 

that is, 

- 
f =  vu (2.3) 

where the geopotential, U, is expressed in terms of spherical harmonics as: 

where r, +, h are the radius, latitude, and longitude of the satellite's proof mass, 

modelled as a point mass with respect to the center of Earth, a, and p are the mean 

equatorial radius and the gravitational parameter of the Earthjespectively, P,, are 
the associated Legendre functions, L a n d  S, are the constant geopotential 

coefficients, and n and m are the degree and order of the geopotential field. 

2 1 . 1  Pines Formulation of the GeoDotential 

Since the GRM mission specifies a polar orbit for global coverage of Earth, a 
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singularity problem exists at the poles when the gradient of the spherical harmonic 

geopotential representation in Equation 3.4 is calculated. By using direction cosines 

rather than spherical coordinates, Pines [ 19731 reformulated Equation 2.4 so that 

the singularities no longer exist. The geopotential can now be used for polar orbits 

with the form being 

where s, t, and u are the direction cosines, 

Z u = -  X Y 
r r r s = -  , t = - ,  

hm are the "derived" Legendre functions, and rm(s,t) and i ( s , t )  are the real and 

imaginary parts of (s + j t)m. Recursion algorithms used for the calculation of the 

"derived" Legendre functions in Pines' formulation on high speed computers is 

discussed by Lundberg and Schutz [ 19871. 

2.1.2 The Encke Formulation 

A technique to perserve numerical accuracy during integration is provided by 

the Encke integration method. This technique uses an analytic reference orbit which 

closely matches the true orbit. The Encke vector then is described as the difference 

between the satellite's true trajectory and the reference orbit. By numerically 

integrating the Encke vector rather than the satellite's true state several significant 

digits can be perserved [Lundberg,1985]. 
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The Encke vector denoted by E is equal to the difference between the reference 

orbit, rs and the true orbit position, as shown in Figure (2.1). The Encke vector 

with its first and second time derivatives are then 

- - -  ~ = r - r ,  

d = r - r ,  

& = r - r ,  

- L a .  

u Y Y  

The reference orbit for this work is modelled as a secularly precessing ellipse 

and can be written in differential form as 
I 

Y Pf, - 

‘S 

rs =- -+fs  
3 (2.9) 

where ?, is the position vector to the reference orbit in a non-rotating, geocentric 

coordinate system as in Equation (2.2) and f, is the perturbing accelerations that 

result in a secularly precessing ellipse. The substitution of Equations (2.2) and 

(2.9) into Equation (2.8), results in the Encke formulation, 

(2.10) 

Extreme care was taken to define the reference orbit for these simulations, 

since possible problems may result in this formulation if the reference orbit nearly 

equals the true orbit or if it does not remain close to the true orbit. With the first 

problem, a signifcant loss of numerical accuracy may result from the subtraction of 

nearly equal terms. However, this problem can be overcome by arranging the 

computations for the first two terms of Equation 2.10 in an appropiate form. To 

achieve increased accuracy, the Encke vector, E, must remain significantly smaller 
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than either the true or reference position vectors which means that the reference 

orbit must not deviate substantially from the true orbit. The choice for the reference 

orbit used in these simulations was provided by Lundberg [ 19861. 

2.2 Initial Conditions 

The initial conditions (z = 0.) for the true and nominal ephemerides were 

provided by White [1987]. The true orbit's initial conditions were especially 

designed so that the final state after exactly 32 sidereal days will be very nearly the 

same as the initial conditions. They were determined using the University of Texas 

Orbit Processor (UTOPIA) and are given below in Table 2.1. The initial conditions 

for the nominal orbits shown in Table 2.2 were also estimated using UTOPIA, by 

fitting the emphemerides of the true orbits in a least squares sense with a different 

model to simulate an actual situation. 

2.1 .. .. 
te 1 

X i  = 26216184162 m, Y1 = -150104.5682242 m, Z1 = 6515224.696995 m, 

V x l  = -4.81851974 I. 1P2 ds, Vyl = -7816.577574349 m/s, V z l  = -179.5770526472 mls, 

llite 2: 
X2 = 262.89992177 m, Y2 = 149884.9023112 m, Z2 = 6515227.869697 m, 

V x 2  = -4.76637746 x 1P2 mls, Vy2 = -7816.587219218 m/s, V z 2  = 179.4189749253 mls, 
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2.2 .. for the N o w  O r m  .. 

X1 = 251.82011984 m, Y1 = -150205.8333573 m, Z1 = 6515206.75655362 m, 

V x l  = -8.617240919 x 1V2 ds, V y l  = -7816.5813004031 mls, V z l  = -179.65789276711 mls, 

X2 = 25434316160 m, Y2 = 149823.0882622 m, Z2 = 6515206.44534594 m, 

Vx2 = -8.650294014 x 1W2 mk, Vy2 = -7816.6011900852 m/s, V z 2  = 179.39406524579 m/s 

2.3 Encke Reference Orb its 

The numerical integration of both the m e  and nominal orbit simulations used 

the same Encke reference orbits that are described in Section 2.1.2. The orbital 

parameters used to generate these reference orbits are listed in Table 2.3. 

Table 2.3 JWke Rderence Orbit M w  Orbital ~ ~ e m e n t s  

Semimajor Axis, a ' (m) 6523600.811305 6523599.627289 

Inclination, i (deg) 90 9 0  

Longitude of Ascending Node, i2 (deg) 90 9 0  

Argument of Periapse, o (deg) 0.0 0.0 

Eccentricity, e 0.0 0.0 

Mean Anomaly, M (rad) 1,593311064614 1.547312542033 

Node Rate, h (radlsec) 0.0 0.0 

Argument of Perigee Rate, h (radlsec) 0.0 0.0 

Modified Mean Motion, M (radlsec) 1.1963632130262 x l V 3  1.1963633652585 x l W 3  

. .  
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2.4 The Gravity Model 

The gravity model, OSU86F, used in the GRM high precision simulation was 

created at Ohio State University [Rapp & Cruz, 19861. It contains a set of constant 

geopotential coefficients complete to degree and order 360. The gravitational 

parameters used in this model are given in Tdbie 2.4. 

2.4 Gravitv Model for the True Orbib 

Initial Greenwich Hour Angle, a = 100.3399460 deg, 

Earth's Rotational Velocity, ke = 7.2921158553066 I los rads 

= [15.04106864 deghrl, 

Earth's Gravitational Parameter, D = 3.986004404 x 1014 m3/s2, 

Earth's Mean Radius, a, = 6378137.0 m, 

Maximum Degree of Ceopotential: 

Maximum Order of Ceopotential: 

360, 

360 

The Goddard Earth Model 10B (GEMlOB) used for the nominal orbit was 

created at the Goddard Space Center and is discussed by Lerch et a1 [1981]. 

Coefficients up to degree and order 36 plus some additional coefficients (up to 

order 82) that produce resonance effects on the GRM orbit were included also. The 

gravitational pararneters for this model are: 
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2.5 G- Model for the N o m  Orb& . .  

Greenwich Hour Angle, a =  

Earth's Rotational Velocity, 0, 

- - 
Earth's Gravitational Parameter, P =  
Earth's Mean Radius, Be = 

Geopotential: 

100.3399460 dog, 

7.2921158553066 x lo5 radls 

[15.04106864 deglhr], 

3.9860064 x 1014 m31s2, 

6378145.0 m, 

GlOB complete to degree and order 36 

with adjusted resonant coeficients of 

orders 16, 17, 33, 49 and 82 

2.5 The One -Wav Doppler Range-Rate Alporithm 

Gravity anomalies will be indirectly measured by the Satellite-to-Satellite 

Tracking System (SST) that uses an integrated one-way Doppler system to calculate 

range-rates between the proof masses of the two satellites. Simultaneously, while 

the lead satellite's (A) narrow-beam antenna transmits two signals at 42 and 91 

GHz directed towards the trailing satellite (B), the trailing satellite's antenna 

transmits two signals at the same frequencies towards the leading satellite. These 

two frequencies, that are broadcast continuously, were chosen to filter out 

ionospheric effects. When the line-of-sight distance between the satellites varies, 

the frequency of the signals are doppler shifted. These doppler-shifts are measured 

by comparing the signals to a 5 GHz reference signal. Satellite-to-satellite range- 

rates are then computed from the doppler-shifts. Finally, gravity anomalies can be 

evaluated using these range-rates with various techniques. 



21 

The one-way doppler algorithm simulates the doppler measurement by first 

calculating the time of flight (TOF=At) of each signal of the same frequency. If 

both satellites receive each other's signal at ti  then the trailing satellite (B) 

transmitted a signal to the lead satellite at time ti - Atsi and the leading (A) 

transmitted a signal to the trailing satellite at time ti - d t ~ i .  The path length or the 

distance between the satellites is calculated by subtracting the position vector of the 

transmitting satellite at time t i  - Ati from the position vector of the receiving 

satellite at time'tb This requires interpolating the states of each satellite at the time 

of transmission. For each satellite, the range or distance , pi, that their signals have 

travelled must be iterated until the following equations hold true, 

where At is the TOF of the corresponding signal and c is the speed of light in a 

vacuum. An average of each satellite's simultaneously measured distance is then 

taken so that the path length of the signal that arrives at time ti is 

(2.13) 

Finally, the integrated range-rate measurement at ti is determined by 

subtracting the previously measured range from the current range value and 

dividing by the interval between measurements, h, which for this simulation was 

taken to be four seconds, i.e., 

(2.14) 

The analytical equation for the instantaneous range-rate is 

. .  
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(2.15) 

where the instantaneous range vector is the difference between the position vector 

of the leading cA) and trailing satellites e'), 
(2.16) . 

pmsT is the magnitude of the instantaneous range vector, and FmST is the time 

derivative of $mw 
Instantaneous range-rates from Equation (2.15) were calculated along with the 

integrated one-way doppler range-rates from Equation (2.14) and compared. These 

results are presented in Chapter 3. 

2.6 The KSGFS Nume rical Intemator 

A time saving, but highly accurate numerical integration algorithm, KSGFS 

[Lundberg, 19851, was used for the creation of the ephemerides of all orbit 

simulations . The KSGFS package is a multi-step, futed mesh, class II numerical 

integrator that uses a constant stepsize (h) with the general formulation (Adams' 

type) of the Predict-Evaluate-Correct-Evaluate (PECE) Algorithm. The accuracy of 

the KSGFS integrator is a function of the order of the integrator (NORD), the 

constant step size (h), and the starting convergence criterion (ALIM). The order of 

the integration, which represents the number of function evaluations that are stored 

within the back-difference table, was set at 10, the stepsize was set at 4 seconds, 

and the starting convergence criterion was set at 10-16. 
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2.7 The Computational Facilities 

All computations within this study were carried out on the University of 

Texas System Center for High Performance Computing (CHPC) Cray X-MP/24 

supercomputer located at the Balcones Research Center in Austin. The CFI' 1.15 

fortran compiler under the Cray Operating System (COS) was used to process all 

software. Using a 64 bit word with a 48 bit mantissa, the Cray X-Mp/24 provides 

approximately 14 decimal digits of numerical accuracy in single precision arithmetic 

operations. 

Since the evaluation of the Earth's geopotential requires 90 percent of the 

CPU computational time, it is essential that its recursion algorithms are completely 

vectorizable. Studies of these algorithms were performed prior to the actual 

simulation study by Schutz et a1 [1987] at Cray's Mendota Heights computer 

facility on the CRAY X-MP/48 and on the Cray X-MP/24 at U.T.. From these 

tests, the 32 day high precision orbit simulation with a geopotential of degree and 

order 360 was estimated to require approximately 20 hours of Cray's CPU time for 

a numerical integration step size of 4 seconds. Actual simulation time costs are 

reviewed in Chapter 3. 
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Figure 2.1 The Encke Vector 



CHAPTER III 

SIMULATIONS OFTHETRUE AND NOMINAL ORBITS 

This chapter presents the results of creating the true and nominal orbit 

simulations performed at the University of Texas at Austin. Section 3.1 describes 

the predicted computer costs (CPU time) involved in creating a high precision orbit 

simulation that will represent the true or actual GRM orbits. The actual computer 

cost is discussed in Section 3.2 along with the results of the true orbit simulation. 

The comparison of the final conditions with the initial conditions is also presented 

in Section 3.2 to illustrate how closely they fullfil1 the groudtrack repeat 

requirement. 

3.1 Pre-evaluation ComDuter Cost Analysis 

Before submitting the costly High Precision Orbit Simulation, a compu er cos 

analysis was performed on the software that was used generate it. It was found that 

evaluating the gravity accelerations by using the geopotential routine (GRAV) takes 

90 percent of the execution costs (CPU time) on the Cray X-MP/24. The cost 

analysis involved timing a number of executions with the GRAV routine using 

different geopotential files in both single and double precision. Three geopotential 

files were investigated in this study: OSU322 [Rapp, 19811, OSU300 and 

OSU86F [Rapp et al, 19861 from the Ohio State University. The goal was to find 

highly accurate but efficient software to evalutate the geopotential. The results are 

presented in Table 3.1. 

25 



26 

- 
E 
0 

Q 
3 
Q > 

.I 
Y 

I 

w 

u 
\ Y 

- 
E 
0 
v1 
0 
8 
L a 

.I 

...I 

L aJ Y 
0 

X 
aJ 
aJ 
L 
M 

& - 
aJ 
I .I 

Erc 
I 

.I 
Q 

c: 
aJ 
0 a 

Y 

Y 

8 
c3 
- 

v) 

E 
c? 
d 

00 

v) 

0 
\o 

0 

! 
P P N 
r( 

aJ 
M 
C 
cn 

I 

..I 

aJ 

C a 
0 .I a cn 

aJ 
I 3 M 

aJ 
M 
C 
cn 

I 

.I 

aJ 
3 
a 
n 0 

I 1 2 2  m -r( * O  m m m 
0 
\o 

0 
\o 

0 0 0 
0 0 

0 

N rn m 
3 
0 
cn 

N 
N m 
3 
0 
cn 

H rn m 

3 
0 
cn 

0 
0 m 

3 
5 

5 

5 
00 

3 



27 

Since the Cray Fortran compiler does not vectorize double precision 

arithmetic, the timings per function evaluation are rather large. The OSU86F 

geopotential field was chosen for the high precision orbit simulation because it was 

the most recent file published that contains higher degree and order coefficients 

based on actual observations of surface gravity. With a 4 second integration 

stepsize and 2 function evaluations per integration step, the 32 day simulation was 

expected to take nearly 20 hours of CPU time on the Cray X-MP/24. 

3.2 The True Orbit Simulation 

With a four second integration step size, the 32-day repeating groundtrack 

mission required 19.2 hours of CPU time for the computation of 1.38 million 

function evaluations on the Cray X-MP/M supercomputer. The final state (position 

and velocity) of the two '5nner" satellites (proof masses) after 32 sidereal days is 

presented in Table 3.2. The ephemerides of both satellites were recorded on 

magnetic tapes at 4 second intervals for the 32 solar days. Also recorded on 

magnetic tapes were the Encke vector along with its first and second derivatives 

which represent the position, velocity, and acceleration with respect to the reference 

orbit; the true position and velocity vectors; the acceleration vector due to the 

nonspherical geopotential perturbations; and the Satellite-to-Satellite Tracking 

range-rate measurements. The 32 solar day ephemeris includes 691,200 data 

points . 
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By comparing the initial longitude and latitude with the final longitude and 

latitude of each satellite, it was determined that the orbits repeat at the end of 32 

sidereal days to within 1.78 km for the lead satellite and 2.52 km for the trailing 

satellite. This means the lead satellite misses its repeat location by 0.233 seconds, 

and the trailing satellite misses its repeat location by 0.331 seconds. As shown in 

Table 3.3 which compares the initial and final conditions of each satellite, the 32 

sidereal day orbits resulted in very close repeats of their initial conditions, thus 

satisfying mission requirements. 

le 3.3 C w o n  of the -and F W  C- . .  . .  

Initial Latitude: 88.68881 deg 88.69073 deg 

Final Latitude: 88.67285 deg 88.71340 deg 

Latitude Error: 0.015960 deg 0.022400 deg 

Longitude Error: 0.000600 deg 0.001640 deg 

Groundtrack Error: 1.780 km 2.5240 km 

Time Error: 0.233 sec 0.33072 see 

The nominal simulation was determined by performing a least squares fit to 

the true ephemerides described above using the University of Texas Orbit Processor 

(UTOPIA). The fit required the adjustments of the zonals J2 and J3 and the first two 

pairs of the resonant coefficients at orders 16, 17,33,49, and 82 in the GEMlOB 

gravity field. The initial conditions of the nominal orbit simulation were estimated 
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along with the above resonant coefficients by White [ 19871 and were presented in 

Chapter 2. The final conditions of the nominal orbit simulation at the end of 32 

sidereal days are presented in Table 3.4. 

It was desired to use a small geopotential field differing from the thruth model 

to simulate an actual mission. Such a field results in differences that exceed the 

mission requirements. Therefore, the nominal simulation was first estimated for the 

leading satellite using a 36 by 36 GEMlOB gravity field. This baseline trajectory 

was then differenced from the true trajectory of this satellite in the radial, along- 

track, and cross-track directions. These differences were rather large and they did 

not meet the mission's specifications of 100 m in the radial and along-track 

directions and 300 m in the cross-track direction. It was determined that the 

spherical harmonic coefficients at orders 16,17,33,49, and 82 were in resonance 

with the 160 Ian orbit since their periods are commensurate with an integer number 

of the satellite's daily revolutions. These resonant coefficients were seen to cause 

periodic variations in the along-track direction. For example, order 82's resonant 

period was found to be 32 days with an amplitude over 800 meters [White, 19871. 

Therefore, the first two pairs of the harmonic coefficients, & and S,, were 

estimated at these orders to reduce the residuals within the mission's specifications. 

However, these specifications were sti l l  not completely met so it was decided that 

the zonals J2 and J3 should also be estimated. Once the trajectory of the leading 

satellite was estimated with residuals to meet the mission specifications, the 

adjusted GEMlOB gravity field was used to estimate satellite two's trajectory. The 

details of this estimation process for the nominal orbit are explained by White 

[1987]. 
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3.4 RTN Differences Between True and No mind Orb i k  

The true and nominal orbit simulations are compared by examining the radial 

(R), transverse (along-track, T), and normal (cross-track, N> components of the 

position vector difference along the entire trajectory of the 32 day orbit. These 

differences indicate the level of effort necessary to meet the orbit determination 

requirements of the mission. The prime concern of this study is the gravity mission 

which requires 30 accuracy of 100 meters in the radial and 300 meters for along- 

and cross-track components. The differences between the true and the nominal 

orbits must remain below these requirements. The radial component of the 

differences versus time for the lead and trailing satellite (satellite 1 and satellite 2) 

are shown in Figures 3.1-a and 3.1-b, respectively. The transverse difference 

versus time are shown in Figures 3.2-a and 3.2-b for satellite one and satellite two, 

respectively. The normal differences are shown in Figures 3.3-a and 3.3-b. These 

graphs were generated by sampling data at a rate of five points per orbit. 

As seen from these figures, the radial differences of both satellites remain 

between 355.0 meters; the transverse residuals of both satellites remain between 

+200.0 and -250.0 meters; and the normal differences of both satellites remain 

between f55.0 meters. Therefore, the nominal orbit simulation meets the 

requirements for the gravity mission, whereas the magnetic mission requirements 

(30) of 100 meters in the along-track direction are not satisfied. However this 

nominal orbit simulation will be used to improve gravity models so that eventually 

the magnetic mission's requirements can be met, or additional resonance terms can 

be estimated to further reduce the transverse differences. 
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3.5 Range-Rate Measurements 

If the range-rate between the satellites could be instantaneously measured, 

then a plot of range-rate versus time for the 32 day true orbit simulation would 

have the characteristics shown in Figure 3.4. Range-rates during the beginning of 

the mission would range between H . 8  m/s, then increase gradually (W.9 m/s) near 

the end of 32 days. 

Actual range-rate measurements made by the SST's integrated one-way 

Doppler system along the true orbit would resemble those shown in Figures 3.5-a 

and 3.5-b for the reception of the signal by satellite 1 and satellite 2, respectively. 

These plots also exhibit the trend described in the instantaneous plot. These 

simulated measurements were made by the one-way Doppler range-rate algorithm 

discussed in Chapter 2. Figures 3.6-a and 3.6-b show the time of flight (minus 1.0 

millisecond) of the signal received respectively by satellite 1 and satellite 2 against 

time. Since the variations of the time of flight are on the order of 1.0 ps, one 

millisecond is subtracted from the actual time of flight in order to show these smal l  

differences in the time of flight. With the speed of light (c) approximately 3 x lo8 

d s ,  the conresponding distances between the satellites could also be represented by 

these figures. The average range-rates of these two measurements are presented in 

Figure 3.7, and the differences of the two measurements are presented in Figure 

3.8. The two satellites' antennae are not measuring the same range-rates since each 

satellite is accelerating and decelerating at different times and signals are not 

instantly received. Figure 3.8 shows the differences between the two satellite 

measurements to range between +lo0 microns per second. 

All measurements calculated by the one-way Doppler algorithm were 

compared against the ideal instantaneous measurements. Figures 3.9-a and 3.9-b 
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show the differences between the measurements calculated from the signal received 

using the one-way Doppler algorithm and the instantaneous measurement for 

satellite 1 and satellite 2, respectively. Figure 3.10 shows the difference between 

the instantaneous and the average of the two satellite range-rate 

measurements.These differences remained between +2.5 and -3.5 millimeters per 

second. 

The nominal orbit simulation range-rate measurements were then compared to 

those from the true orbit. It is anticipated that the difference between the nominal 

and true measurements would be used to recover the true geopotential field. Figures 

3.1 1-a and 3.1 1-b show the differences between the nominal and the true range-rate 

measurements against time as measured respectively by the signal received by 

satellite 1 and satellite 2. These differences remain below f35 millimeters per 

second. 

Each of the above figures were generated by sampling the data at a rate of five 

points per orbit. The sinusoidal patterns seen on these graphs and the above RTN 

graphs are usually the results of this sampling rate and are generally not the true 

indication of the actual data. 

It was found that the iterating procedure of the one-way Doppler algorithm to 

determine the time-of-fight of the transmitted signal of satellite two was unable to 

converge occasionally (15 points out of a total of 691,200 measurements). The 

computer code and algorithm was extensively evaluated to clear this problem, but 

the cause was not determined. Possibly, it could be due to round-off error when 

interpolating for the states of each satellite. The measurements calculated during 

these non-convergences did not meet the 1 pm/s accuracy required, and were 

ignored. 
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Figure 3.1-a Residuals between true & nominal orbits 
for satellite one. 
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Figure 3.1-b Residuals between true & nominal orbits 
for satellite two. 
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Figure 3.2-a Residuals between true & nominal orbits 
for satellite one . 
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Figure 3.3-a Residuals between true & nominal orbits 
' for satellite one. 
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Figure 3.3-b Residuals between true & nominal orbits 
for satellite two. 
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Figure 3.4 Instantaneous range-rate 
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Figure 3.5-a Integrated One-way Doppler measurements for signal receivec 
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Figure 3.5-b Integrated One-way Doppler measurements for signal received by 

satellite two. 
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Figure 3.6-a Time of flight of signal received by satellite one. 
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Figure 3.6-b Time of Flight of signal received by satellite two. 
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Figure 3.7 Average of both satellite's Integrated One-way Doppler measurements 
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Figure 3.8 The difference between the integrated one-way doppler range-rate 

measured by satellite 1 and satellite 2. 
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meous range-rates. 
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Figure 3.9-b The difference between satellite two and instantaneous range-rates. 
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Figure 3.10 The difference between instantaneous and average range-rates. 
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Figure 3.1 1-a Differences between true & nominal Integrated One-way ' 

Doppler measurements for satellite one. - 
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Figure 3.1 1-b Differences between true & nominal Integrated One-way 
Doppler measurements for satellite two. 
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SJMUI .ATION OF THE DRAG COMPENSATION S Y S W  

This Chapter describes the mathematical formulae and control logic for the 

design of a Disturbance Compensation System (DISCOS) thruster control 

algorithm. The DISCOS is designed to offset effects due to drag and radiation 

pressure on the satellite, but only drag will be considered here. 

A description of the DISCOS mechanism along with its history is discussed in 

Section 4.1. Section 4.2 describes the control logic of the computational algorithm 

used for this simulation. The equations of motion for this analysis are derived in 

Section 4.3 and Section 4.4 descibes the force model used in this study. The 

numerical integration of the equations of motion of the proof mass and outer 

satellite is discussed in Section 4.5. The control laws, system logic and parameters 

for on-off thrusting switches is detailed in Section 4.6. Section 4.7 describes the 

ball-centering attitude control law that is coupled with the DISCOS translational 

control system so that small lift and sideslip forces can help reduce fuel 

expenditure. Finally, the results of this investigation are presented and the amount 

of fuel required to fire the thrusters for drag compensation during the six month 

mission is calculated in Section 4.8. Also, fuel expenditures are compared with 

previously published reports of Keating et a1 [1986] and Ray & Jenkins [ 19811 in 

Section 4.8. 
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4.1 The Distu&ance Corn-pensation Svstem 

As early as 1962, the feasibility of a mechanism that freed a satellite from 

atmospheric effects was first investigated by B. Lange, [1962]. Later, a "drag- 

free" mechanism, the DIS turbance Compensation System (DISCOS), was 

developed in a joint effort by The Johns Hopkins University Applied Physics 

Laboratory and the Standford Universtiy Guidance and Control Laboratory 

[1974] for the 1972 U.S. Navy's TRIAD satellite in an effort to improve navigation 

by satellite. 

In the DISCOS design, a small satellite (the proof mass) is completely 

enclosed inside a cavity at the centroid of a larger outer satellite. This inner proof 

mass is then shielded from all nonconservative forces such as drag and radiation 

pressure. As the outer satellite is perturbed by these forces, its orbit deviates from 

the proof mass's orbit. When its deviation from the proof mass reaches a 

predetermined limit (the deadband region), appropiate thrusters fre from the outer 

satellite's propulsion system to keep its orbit coincident with the inner satellite's 

orbit and effectively negates the effects of nonconservative forces. This design was 

observed to maintain the proof mass of the TRIAD satellite within specified 

boundaries at an altitude of 700 lan for 18 months using only three pounds of cold 

propellant [JHUAPL et al, 19741. 

While in orbit, the spherical proof mass orbits without contact with the outer 

satellite's spherical cavity, and its position relative to the outer satellite is monitored 

by a set of capacitance bridges (2 plates oppositely aligned on each of the 3 

coordinate axes). External forces displace the outer satellite's electrical center of the 

capacitive cavity from the mass center of the proof mass, so that its capacity 
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changes as a function of its position relative to the proof mass's center of mass. 

The TRIAD proved that a satellite equipped with the DISCOS mechanism can 

be essentially drag-free. Because a comprehensive gravity study such as GRM 

would require a low altitude orbit for extreme sensitivity to the geopotential, 

unpredictable, orbit decaying drag effects need to be constantly removed by an 

onboard control system. A review of the TEUAD DISCOS design indicated that its 

technology is adaptable to the GRM mission. Studies have shown that 0.1 pm/s 

minimum sensivity to the velocity of the proof mass with respect to the satellite's 

centroid can be achieved by the modification of the TRIAD DISCOS sensor 

[Keating et al, 19861. 

The proposed GRM DISCOS mechanism is comprised of a 160 mm diameter 

spherical beryllium oxide housing (cavity) that includes a capacitive three-axis 

orthogonal coordinate position sensor and associated electronics while enclosing a 4 

kg, 140 mm spherical aluminum proof mass and is located at the mass center of 

each satellite. Each entire DISCOS instrument, shown in Figure 4.1, is estimated to 

weigh 15 kg [Keating et al, 19863. 

The outputs of the DISCOS sensor are used by the Guidance and Control 

System which controls the thrusting on all three body-futed orthogonal axes. Each 

spacecraft uses eight along-track thrusters (4 foreward and 4 aft) that are rated at 4 

newtons apiece; eight 1 N thrusters (4 port and 4 starboard) for yaw momentum 

unloading and cross-track drag compensation; eight 1 N thrusters (4 top and 4 

bottom) for pitch momentum unloading and vertical translation control; and eight 1 

N thrusters (4 oppositely aligned) for roll momentum unloading. All thrusters are 

modelled as "idealized", instantaneous on-off force generators; and are fired in 
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pairs. Approximately 1400 kg of liquid hydrazine provided by fuel tanks placed 

equidistant from the proof mass to minimize mass attraction will be used to fuel 

each spacecraft's propulsion system. This gives a total impuse of 2.8 million 

newton-seconds of thrust to counteract drag and control each satellite's attitude 

[Ray, &Jenkins, 19811. 

Since the Satellite-to-Satellite Tracking antennae are attached to the outer 

satellites, their precise displacement must be determined so that the relative velocity 

between the phase centers of the antennae can be determined to correct the SST 
data. As shown in Figure 4.2, the true range-rate (h) is then 

4 = s + ljxl + ljX, (4.1) 

where i is the measured range-rate provided by the SST and 6,, and 6,,, 

respectively represent relative velocities of the leading and trailing spacecraft's SST 

antenna with respect to the proof mass [Keating er al, 19861. 

According to Keating et a1 [1986], "the performance requirements of the 

DISCOS for the GRM mission are: 

1.) Roof mass-to-spacecraft relative velocity knowledge within 0.1 pm/s 

(1 a) with a 4 second averaging time. 

2.) Three-axis disturbance compensation within 10-9 g, rms, over the 

frequency range of 0.001 to 0.5 rad/s." 

In order to meet the 10-9 g compensation requirement, the proof mass (ball) 

must fly freely within the satellite's cavity without hitting its walls, or in other 

words, the outer satellite must follow the proof mass without touching it. 

Satellite/ball interactions due to mass attraction, electric and magnetic fields, 

residual gas pressure (inside the cavity) and radiation pressure are some of the 
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possible sources of error. The 1972 flight of the U.S. Navy TRIAD satellite proved 

that these disturbances can be kept below 10-11 g. It has been determined that 

motions caused by thruster firings will directly cormpt science data (Equation 4.1) 

unless it is detemined to a 0.1 pm/s accuracy. Ball center of mass offset, ball shape, 

pick-off noise, thermal deflections and structural flexure are some of the errors 

associated with the proof mass velocity measurements provided by the capacitive 

sensor. Also, since the capacitors (one pair on each axis) exhibit nonlinearities 

outside a small linear range (41.0 mm), the deadband limit is fixed at these 

boundaries. Therefore, the maximum distance the outershell can deviate from the 

proof mass is 1 mm (furthest ball excursion in all directions) before the 

corresponding thrusters turn on [Keating et al, 19861. 

4.2 The Design of the Drag-Free Thruster Control Aborithm 

The primary objective of the thrusting control algorithm is to compensate for 

the drag effects on the outer satellite while minimizing fuel consumption. It involves 

controlling the outer satellite's thrusters so that it precisely follows the drag-free 

orbit of the proof mass within required limits. 

Both the along-track and cross-track thruster control models involve turning 

the appropiate thrusters on and off at the precise moments to keep the outer 

satellite's center of mass from deviating no more than 1 mm from that of the proof 

mass. The 160 mm diameter cavity allows the 140 mm diameter proof mass to drift 

within a 10 mm margin before it touches the wall. In general, the capacitance is a 

nonlinear function of proof mass displacement in the cavity. However, since the 
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compacitive sensors behave linearly within a f l  mm region, the deadband zone (the 

thruster-on switch) is set at these limits. These on-off switches cause a contactor 

control limit cycle to occur in either the along-track (Figure 4.3) or cross-track 

(Figure 4.4) phase-plane diagrams. The thruster-on portions of the along-track limit 

cycle is represented by a parabolic arcs at the deadband regions in the phase-plane 

diagram as shown in Figure 4.3. The thruster-off portion is represented by a "coast 

arc" parabola in the phase-plane. The thruster-on/off switches occur at the 

intersection of these two parabolas. There is no steady-state limit cycle for the 

cross-track control law since there is no consistently predictable force in this 

direction. This law imparts a small inward velocity proportional to the proof mass 

distance from the deadband zone. 

As drag affects the outer portion of the satellite, the proof mass moves 

forward with respect to the center of mass of the outer satellite with increasing 

speed. Eventually the proofmass approaches the forward deadband region inside 

the cavity which is represented by the parabolic thrust arc in Figure 4.3. The aft 

thrusters turn on for approximately 60 milliseconds causing the outer satellite to 

move ahead of the proof mass. Then drag slows the velocity of the proof mass with 

repect to the satellite's centroid to zero and the ball reverses direction and speeds 

back to the forward deadband region as shown by the parabolic coast arc in Figure 

4.4. 

The frequency and amplitude of the along-track limit cycle was chosen to 

enhance the accuracy of the post-flight ball velocity reconstruction. Due to 

uncertainties, satellite-to-satellite range-rate measurements taken during thruster-on 

times are not to be used in the gravity recovery. Therefore, a repeatable limit cycle 

is needed for filtering out the data recorded during these times. However, the 
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variation of drag along the satellite's orbit cause difficulties in achieving a precisely 

repeatable limit cycle. Also it is desirable to maintain a small  amplitude limit cycle to 

remain within the linear range of the sensor, but with a small amplitude cycle, the 

thrusters fire more frequently causing a increase in fuel consumption and also 

affecting thruster reliability. Therefore, "the desired steady-state condition is a 

sequence of relatively short firing pulses and relatively long coast arcs," [Ray and 

Jenkins, 19821. 

Unwanted disturbance forces such as electrical charge and self-gravity on the 

proof mass are a important sources of error and the control law should minimize 

their effect on science data. Therefore, the average value of the proof mass 

excursions must be kept as close to zero as possible. According to Ray and 

Jenkins, [ 19821, "the average position on the parabolic arcs will be zero for hrn = 

2 h, which has been chosen for the nominal along-track limit cycle on GRM," 
where hax is the maximum along-track excursion of the proof mass with respect to 

the outer mass (apex of thrust arc parabola) and is the minimum along-track 

excursion (apex of the coast arc parabola). So with these considerations, "the GRM 

limit cycle has been tentatively set at hm = +1.0 mm and x- = -0.5 mm." 

Since the spacecraft's attitude affects the translational dynamics of the proof 

mass relative to the outer spacecraft through both aerodynamic forces and kinematic 

pseudo forces (centrifugal and comolis) and the attitude thrusters will produce a 

torque and a force when fired, the attitude and translational control laws must be 

coupled [Ray and Jenkins, 19821. The ball-centering attitude control system 

explained in Section 4.7 is an example of this coupling. 
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4.3 The Eauations of Relative Motion 

Figure 4.5 shows the relative position of the inner satellite (proof mass) with 

respect to the outer satellite's center of mass. Both' inner and outer satellites are 

modelled as point masses, however it is assumed that the mass attraction between 

the two is negligible. In a mean of 2000, equatorial, geocentric, inertial coordinate 

fiame the position of the proof mass with respect to the outer satellite (outer mass) 

is 

- -  - 
E =rpm - rOm (4.2) 

where Ipm is the position vector of the proof mass and Tom is the position vector of 

the outer mass as referenced to the hemal coordinate system. 

Taking the time derivative twice gives the proof mass's acceleration with 

respect to the outer mass as 

Y .. - L. 

rOXIl 
e = r  - 

Pm (4.3) 

where the dynamical motion induced on the proof mass state is purely gravitational 

and is represented by the two-body acceleration plus accelerations due to a 

nonspherical Earth geopotential of degree and order 5, 

dynamical motion of the outer mass includes the two-body and 

nonspherical accelerations, but is perturbed by drag forces that are eventually 

counteracted by the thrusters. Therefore, the equations of motion of the outer mass 

is 
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- 
In the above equations, p is the Earth's gravitaional parameter, fgpm and fgOm 

respectively represent the gradient of the geopotential induced on the proof mass 

and the outer mass due to Earth's nonsphericity. Drag and thrust are respectively 

represented as fdrag and fthrust' The term fBc is a small lift force in the radial 

direction or a sideslip force in the cross-track direction produced by pitching or 

yawing the outer mass at smal l  angles with respect to the velocity vector, so that 

they will help center the proof mass in these directions. This ballcentering attitude 

control law is explained further in Section 4.7. 

- - - 

Finally, by substituting Equation 4.3 and Equation 4.4 into Equation 4.2, the 

equations of motion that govern the proof mass's state with repect to the outer mass 

are produced, 

The state vectors of the proof mass with respect to the inertial frame and with 

respect to the centroid of the satellite are propagated by numerically integrating 

Equations 4.4 and 4.6 as opposed to Equations 4.4 and 4.5. The Encke integration 

can be used to provide greater accuracy in the solution for the relative motion than 

the differencing of the numerical solution of the absolute positions. 
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4.4 The Force Model 

To keep this model as simple as possible, forces due to three-body, temporal, 

and kinematic effects were not included in this analysis. Disturbance forces such as 

electrical charge on the proof mass and ball-satellite gravitational attraction are also 

not included in this analysis. 

4.4.1 GeoD - otential Forces 

The force induced on either the proof mass or the outer mass from the Earth's 

nonsphericity is respectively derived by the gradient of the geopotential, 

- 
fg = VUpm 
Pm 

- 
fg = vu,, 
om 

(4.7) ' 

(4.8) 

where the geopotential, U, is expressed in the Pines formulation using direction 

cosines, which is discussed in Chapter 2 and represented by Equation (2.4). The 

OSU86F gravity model (discussed in Chapter 2) through degree and order 5 was 

used for the geopotential coefficients in the above calculations. 

4.4.2 Drag 

The drag force per unit mass induced on the outer satellite is 

. .  
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(4.9) 

where CD is the outer satellite's coefficient of drag (CD = 3 . 3 ,  S is frontal area of 

the spacecraft (S = 1.06 m2), p is the density of the atmosphere, m is the mass of 

the satellite and v is the velocity of the spacecraft with respect to the atmosphere, 

The density of the Earth's atmosphere is much less predictable at altitudes 

above 125 km than at lower altitudes. The behavior of the atmosphere above 125 

km is due to many complex processes, such as geomagnetic heating, sunspot 

activity (solar flux), seasonal latitudinal variation of helium and the lower 

troposphere, and gravitational attraction of Earth's geoid. These processes 

determine the densities of the atmospheric constituents nitrogen (N2), argon (Ar), 

helium (He), oxygen ( 0 2  and 0), and hydrogen (H) which are involved in 

producing the exospheric temperature. 

The atmospheric density model used in this study was the Jacchia 1971 

Atmosphere Model with modifications by Roberts [Jacchia, 19711. This model 

calculates the densties of the atmosphere based on the aforementioned processes 

that raise or lower the exospheric temperature. Also included in this model are the 

analytical functions of the diurnal variation of the atmospheric bulge, the solar 

radiation flux at the 10.7 cm wavelength, the geomagnetic flux and the seasonal 

variations of the atmosphere. Since solar sunspot activity is known to occur with a 

11 year cycle, the 10.7 cm solar flux and the geomagnetic flux during the actual 

GFW mission (planned for January - June, 1990's) are predicted by using the data 
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obtained from 1975 to 1986. The sunspot cycle's influence on the 10.7 cm solar 

flux and the geomagnetic planetary index for this period are presented in Figures 

4.6 and 4.7, respectively. 

The maximum sunspot activity occurred from 1980 to 1982, while the 

minimum sunspot activity occurred from 1985 to 1986. Atmospheric densities were 

calculated during these times to estimate the maximum and minimum densities the 

spacecraft would encounter during its mission in the 1990's. The predicted 

latitudinal atmospheric density variation for altitudes of 150 to 170 km during the 

vernal equinox of 1991 (high solar activity) and the summer solistice of 1996 (low 

solar activity) are shown in Figures 4.8 and 4.9, respectively. Here it is found that 

the density of the atmosphere at 160 km altitude varies between 6 to 17 x 10-lo 

kg/m3 for high solar activity and between 3.5 to 11.5 x 10-lo kg/m3 during the, 

minimum activity. 

Radial, along-track and cross-track drag components along the trajectory of 

the proof mass's 160 km high, drag-free orbit were computed using the density 

ranges stated previously for high and low solar activity; and they would resemble 

those shown in Figures 4.10 through 4.15. Since, at satellite altitudes, the drag 

induced on the spacecraft is porportional to the inverse of its mass, the drag will 

slowly increase during the lifetime of the mission as the fuel is expended. The drag 

values during the beginning (when the fuel tanks are full), the middle (half-full), 

and the end of the mission (empty) are also shown on the aforementioned figures. 

Along-track drag per unit satellite mass range from -30 to - 180 microns/sec2 

during high solar activity and from -20 to -140 microns/sec2 during low solar 

activity. The unique patterns in these plots arise from the location on Earth that the 
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orbit passes. The polar orbit begins at the equator with a northernly direction; the 

peaks in the radial and along-track figures indicate the north and south pole regions 

where the magnitudes of drag are a minimum; the depressions indicate the 

equatorial regions where the magnitude of drag is greatest. The cross-track drag in 

Figures 4.14 & 4.15 arise from the rotation of the Earth and its atmosphere; the 

spacecraft's ascending track induces drag on its port side while the descending track 

induces drag on its'starboard side; and cross-track drag is zero at the poles. 

4.4.3 Thrust 

The thrust per unit mass generated by the thrusters is modelled as an on-off 

step function. When fore or aft thrusters need to fire then, 

+16 N t aft thrusters on 

ON? off - 
fthrust =( 

- 16 N ? fore thrusters on 

If cross-track thrusters need to fire then 

+ 4 N ii starboard thrusters on 

\ - 4 N n  portthrusterson ' 

(4.10) 

(4.1 1) 

or if radial thrusters need to fire then, 

. .  



+ 4 N 7 top thrusters on 

(4.12) 

\ - 4 N; bottom thrusters on 

where ?, 7, n denotes the radial, tangential (along-track) and normal (cross-track) 

directions, respectively, in a body-fixed RTN coordinate system. 

The Runga-Kutta Fehlberg 4(5) numerical integrator [Betris, 19771 was used 

to integrate Equation 4.6 to determine the ephemeris of the proof mass's state vector 

with respect to the outer satellite and Equation 4.4 to determine the ephemeris of the 

proof mass. This fifth order, singlestep integrator allows for the integration of 

discontinuous functions such as the on-off switching of the thrusters. Embedded 

within this integrator is a fourth order method for automatic stepsize selection, but it 

is not used in this study. 

The step size (h) was set at 0.5 seconds during coasting and 20 milliseconds 

during thrusting phases of the proof mass trajectory with respect to the outer mass. 

The step size is further reduced in both phases to reach switch boundaries precisely. 

4.6 The Logic of the Thruster Control Algorithm 

58 

The thruster control algorithm was programmed in FORTRAN-77 using U T  

System CHPC's Vax 8600 front-end computer and compiled and executed on the 
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Cray X-MP/24 Supercomputer. Conditional IF statements simulate the control 

system by monitoring the proof mass's position relative to the outer satellite in an 

RTN coordinate system and determining when, for how long, and what thrusters 

need to fire. 

The thruster control algorithm is implemented with the initial conditions and 

the various parameters listed in Tables 4.1 through 4.4. Starting at the beginning of 

the coast phase of the limit cycle with the numerical integration step size of 0.5 sec, 

the equations of motion of the proof mass with respect to the inertial frame and with 

respect to the centroid of the spacecraft (Equations 4.4 and 4.6) are integrated. At 

the end of every third step, the along-track position of the proofmass with respect to 

the centroid of the spacecraft and time is recorded. Upon recording the third data 

point, a parabola is fitted through the along-track position versus time curve and the 

along-track velocities of the ball with respect to the spacecraft's centroid is then 

calculated at these three positions. A parabola is fitted through the velocity versus 

position curve. Then the time of the aft thruster turn-on switch (deadband region) 

can be predicted at the intersection of this coast arc curve and an analytical 

representation of the velocity versus position curve (Equation 4.17) for the thrust 

phase of the limit cycle. If the difference of this time and the current time is less 

than the integration step size, the step size is reduced to this difference. 

Once the aft thruster turn-on switch has been activated, the drag force per unit 

mass is estimated using the total time of coast and the thruster-on and -off switch 

velocities (Equation 4.20). The aft thrusters are turned on and the integration step 

size is changed to 20 milliseconds. While integrating the ball's state with respect to 

the spacecraft's centroid, the time of the thruster turn-off switch is predicted using 

the turn-on and turn-off velocities (explained below) and the estimated drag and 
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thrust per unit mass (Equation 4.21). Then, if the difference between the current 

time and the predicted time of thruster turn-off is less then the integration step size, 

the step size is reduced to this difference. Upon reaching the turn-off time, the aft 

thrusters are turned off and the limit cycle is repeated. 

Since the drag and thrust per unit mass changes according to solar activity, 

location above Earth and fuel expenditure, the imparted velocity at the thruster turn- 

off switch must be changed throughout the mission in order to keep the ball 

excursions within the designed -0.5 mm limit. When this value is held constant 

throughout the mission, either too small or too large limit cycles result which cause 

either the aft thrusters to frre very frequently or the fore thrusters to fire, thereby 

greatly increasing fuel consumption. Therefore, this imparted velocity turn-off 

switch was determined for each phase (beginning, middle and end) of the mission, 

such that the maximum ball along-track excursion remains within the designed -0.5 

mm limit, but was held constant in each case. These values are listed in Table 4.4 

for high and low solar activity, respectively, and they range from -0.44 to -0.24 

mm/SeC. 

Unless unexpected disturbances cause the proof mass to reach the radial or 

cross-track f 1.0 mm deadband regions, there is no need to fire radial or cross- 

track thrusters. Therefore, the computational thruster control algorithm outlined 

below involves only along-track drag compensation. All radial and cross-track 

excursions are controlled by the ball-centering attitude control laws explained in 

Section 4.7. 
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onwrack Dw-free Thruster Control A l P O r i t h m .  

1. Specify: a) Initial Conditions of proof mass state with respect to the outer 

mass and the proof mass state in the inertial mean of 2000 coordinate frame 

b) Thrust model parameters, 

c) Gravity model parameters, 

d) Drag model parameters, and 

e) Control law parameters 

The corresponding parameters used in this study are listed in Table 4.1 through 4.4 

and Equation 4.10. 

2. Set step-size to 0.5 seconds. 

3. Xntegrate equations of motion Equations 4.4 and 4.6. 

4. Record time and proof mass position with respect to outer mass every third 

step. 

5. Once three data points of time and along-track position have been recorded 

along the coast arc phase, the along-track control law is implemented by fitting a 

parabola of the form 

(4.14) L 
x = t al + t a 2  + 
through the curve using a least squares approximation where al, a2, a3 are the 

coeffients that describe the curve, x is the along-track position and t is the time since 

the coasting phase began. 

6. Determine velocities at these three data points, 

xi = 2 t i a , + 3  i = 1. 2, 3 (4.15) 

7. A parabola is fitted through the three position and velocity data points to 
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find the coefficients bl,b, and of the equation 

x = X 2 b l  + Ab2 + b3 

This equation is used to describe the phase plane characteristics of the coast arc in 

the along-track direction. 

(4.16) 

8. The analytical representation of the phase plane motion in the along-track 

direction during the thrust an: is, 

- 2 x - -(ffia, + f-t> (x - xma) 
1 . 2 -  

(4.17) 

where is the maximum excursion of the proof mass with respect to the outer 

satellite (taken to be +1.0 mm), f h t  is the thrust per unit satellite mass fied in the 

transverse direction, and fbag is the estimated transverse drag force per unit mass 

(initially set at a nominal value to initiate first control law predictions). 

9. The velocity at the transition point from the coast arc to the thrust arc is 

defined by the intersection of Equations 4.16 and 4.17 and is predicted using the 

quadractic equation (positive root), 

- -B +JB2-  4AC 
%N - . 2 A  

where, 

(4.18) 

(4.19) 

C = $ - x -  

The position and time of deadband intersection (thruster turn-on switch, %N, bN) 

is calculated using Equations 4.16 and 4.15 respectively. 
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10. If the difference between the predicted turn-on switch time bN and the 

current time is less than the integration step size, the step size is reduced to this 

difference. The time of entire coast phase, koast, is recorded. 

11. Estimate drag accelerations during the coast phase 

(4.20) 

where ;6FF is the velocity at the thruster turn-off switch (thrust imparted velocity of 

the proof mass relative to the spacecraft) calculated using Equation 4.17 where 

is the maximum excursion of the ball when the magnitude of drag is a minimum. 

12. Turn-on transverse thrusters, change integration step size to 20 

milliseconds. 

13. Thruster turn-off time, is then predicted using 

(4.2 1) 

14. If the difference between the current time along the thrust arc and is 

less than the integration step size, reduce the step size to this difference to reach the 

turn-off switch precisely. 

15. Once t = toFF, the thrusters are turned off and steps 2 - 15 are repeated. 
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Table 4.1 Inltlal Condltlons . .  . .  
The initial conditions of the proof mass's state in inertial geocentric equatorial mean of 

1950 system are: 

X = 6538137.0 m, VX = 0.001 mls, 

Y = 0.001 m, V y  = 0.001 mls, 

Z = 0.001 m, Vz = 7808.03729 mls 

And the initial conditions of the proof mass's state with respect to the outer satellite are: 

ER = 0.00 mm, i R  = 0.00 mmls, 

ET = 0.95 mm, ET = XOFF m d s  

(see Table 4.4) 

EN = 0.00 mm, kN = 0.00 mmls. 

Table 4 7  Parmeters for the Gravitv M o a  

Earth's mean radius, Ae = 6378137.0 m, 

Earth's gravitational parameter, p = 3.9860044 x m3/s2, 

Earth's rotational velocity, = 7.29211611 x l W 5  radls, 

Gravity Coeficients, Cnm & Sam from 5 x 5 OSU86F gravity field 
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ers for the Drav Mod4 

Mass of satellite: 

Mass of Fuel: 

Total Mass a t  launch from space shuttle, 

a t  mission start (95% Full), 

middle of mission (50% Full), 

near end of mission (5% Full), 

Satellite's projected cross-sectional area, 

Satellite's coeffkient of drag, 

1334 kg, 

U u U  
2734 kg 

2664 kg, 

2034 kg 

1404 kg, 

1.06 m2, 

3.5, 

le 4.4 Parameters for the Coq,&ol Lam 

The 

The 

The 

maximum forward designed excursion, Xmax = +1.0 mm, 

minimum aft designed excursion, Xmin  = -0.5 mm, 

thruster off switch, XOFF, 

! u u u l l  5!l !ubu SLEuIl 

High Solar Activity: -0.308 mmls -0.352 mmls -0.437 mm/s 

Low Solar Activity: -0.240 mmls -0.274 mmls -0.330 mmls 

4.7 Ball-Centering Attitude Co ntrol Law 

A ball-centering attitude control law is coupled with the DISCOS translational 

control system so that radial and cross-track excursions of the proof mass with 

respect to the outer mass can be stopped without firing the radial and cross-track 

thrusters. Figure 4.16 shows how a small pitch bias, a, about the cross-track axis, 
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produces a small aerodynamic lift force, 

Likewise, a small aerodynamic sideslip force can bk produced to center the proof 

mass in the cross-track direction by introducing a small yaw bias, p, about the 

radial axis (Figure 4.17), 

fSidcslipN P f~rag,,. P (4.22) 

These angles are computed by the ball-centering attitude feedback control laws of 

the form 

(4.23) 
(4.24) 

where KIR and K2, and KIN and Kz, are the feedback gains about the radial and 

normal axis respectively (listed in Table 4.5). The gains, KIN and KZN, were 

determined by Ray and Jenkins [1982], and the K,, and KZR gains were 

determined in this study through an iterative process. 

e 4.5 Ball-CI- Atuude Control G w  

Pitch gains (about the normal axis), - - 3.0, 

KzN = 200.0, 

Yaw gains (about the radial axis), KIR - - 100.0, 

KzR = 3000.0. 
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4.8 Results 

The GRM DISCOS simulation using the drag-free thruster control algorithm 

was performed during high and low solar activity and during the beginning (95% 

full), middle (50% full), and end (5% full) of mission to estimate fuel expenditures 

during the mission. Each simulation of one orbital revolution required 

approximately 86 seconds of CPU time on the Cray X-MP/24 supercomputer. The 

number of thruster firings and fuel expended per orbit and 6 month mission along 

with other pertinent data are presented in Table 4.6 and 4.7 respectively for the high 

and low solar activity simulations. 

4.8.1 The Effecti v n  e ess of the D rw-Free Thruster Co ntrol A 1POrithrn. 

Along-track proof mass excursions with respect to the centroid of the outer 

mass against time for one orbit during high and low solar activity are shown in 

Figures 4.18-a, -b, and -c and Figures 4.19-a, -b, and -c when the spacecraft has 

respectively, 95% fuel, 50% fuel and 5% fuel of initial fuel onboard. Radial and 

cross-track proof mass excursions are shown in Figures 4.20-a, -b, and -c for high 

solar activity and Figures 4.21-a, -b, and -c for low solar activity. These excursions 

were plotted during two orbits to verify that they were not securly increasing. 

Along-track phase plane diagrams in Figures 4.22-a, -b, and -c and Figures 4.23-a, 

-b, and -c show the limit cycles that are produced from the control laws respectively 

during the high and low solar activities. 

The aforementioned figures demonstrate the ability of the thruster control 

. .  
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algorithm to offset effects due to drag and keep the GRM spacecraft essentially 

drag-fiee. The along-track phase plane diagrams show the clock-wise pattern of the 

limit control cycles where the nearly straight (actually parabolic) portion of the cycle 

at the +1.0 mm region is the thrusting arc from top to bottom and the band of 

parabolas with their apexes of + O S  mm to -0.5 mm are the coast arcs from bottom 

to top. They show that when the proof mass reaches the aft deadband limit of + 1.0 

mm inside the spacecraft's cavity with a positive approaching velocity, the along- 

track thrusters on the spacecraft fire from 55 to 105 milliseconds until a 

predetermined negative imparted velocity is achieved. Then the proof mass is seen 

coasting until a maximum excursion of -0.5mm relative to the spacedt ' s  cavity is 

reached at zero velocity. Drag then overcomes the thrusting effort and causes the 

proof mass to "fall" with positive velocity back to the deadband region. 

4.8.2 The Effectiveness o f the Ball-Centering Attitude Control Law 

Figures 4.20 and 4.21(-a, -b, and -c) and 4.24 to 4.28 demonstrate the 

effectiveness of the ball-centering attitude control law to produce small lift and 

sideslip forces to center the proof mass in the radial and cross-track directions. 

Figures 4.20(-a, -b, and -c) and 4.21(-a, -b, and -c) show that the radial proof 

mass excursions deviate no more than +0.40 mm or no less than -0.32 mm from 

the centroid of the spacecraft. These figures also show that the cross-track ball 

excursions deviate between M.60 mm.. Radial and cross-track relative velocities as 

a function of time are plotted along two orbits in Figure 4.24 during high solar 

activity and 50% fuel and are indicative of a l l  high and low solar activity cases. The 

radial velocities range from -1.5 to + I S  pm/s while the cross-track velocities range 



from -0.75 to +0.75 p d s .  Also indicative of all cases, the ball-centering attitude 

control pitch and yaw angles for the above case are shown in Figures 4.25 and 4.26 

during two orbits. It is shown that very small pitch angles of 0.057 to 0.069 

degrees are produced to counteract radial excursions while relatively large yaw 

angles of 33.4 degrees are needed to counteract the cross-track excursions. Finally, 

radial and cross-track phase plane diagrams for this case are shown in Figures 4.27 

and 4.28. The irregularities at the beginning of each plot, especially in the cross- 

track curves, resulted from the initial guess of the magnitude of drag to initiate the 

algorithm. Once initiated the curves become periodic with the orbit; local minimum 

and maximum excursions are indicative of the drag induced on the spacecraft in 

these directions or its location above the Earth when compared to the drag profiles 

in Figures 4.10 through 4.15. 

Without the ball-centering attitude control law, the radial and cross-track 

excursions would hit the fl.O mm deadband regions causing both radial and cross- 

track thrusters to fm briefly every 100 to 200 seconds. 

4.8.3 hmarted Velocitv Thurster Turn-off Adiustme nts 

The along-track phase plane diagrams in Figures 4.22 and 4.23 (-a, -b, -c) 

show the results of the velocity turn-off switch adjustments. Each diagram shows 

the maximum excmion to be approximately -0.5 mm, resulting in maximum coast 

arc times of 14 to 25 seconds (as indicated in Tables 4.6 and 4.7) depending on 

solar activity and the amount of fuel onboard. However, holding the imparted 

velocity turn-off switch constant through the drag variation of one orbit results in 
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minimum excursions of 4.50 mm for high solar activity and +0.60 mm for low 

activity. These minimum excursions result in relatively short coast times between 

5.0 and 7.5 seconds (as indicated in Tables 4.6 and 4.7) which may not be 

acceptable for minimizing fuel consumption or for post ball reconstruction. 

Therefore, the control algorithm should be able to adaptively adjust the turn-off 

switch due to these effects. However, the selection of an adaptive control law is 

beyond the scope of this research.' 

4.8.4 Fuel Exmnditure 

Both drag and thrust per unit mass increase when fuel is expended because of 

the decrease in spacecraft mass. For this reason, three senarios during the mission 

are studied: 1) the beginning of the mission (after orbit injection) when the 

spacecraft has approximately 95% fuel left onboard, 2) the middle of the mission 

with 50% fuel onboard, and 3) near the end of the mission when there is 

approximately 5% fuel left onboard. Since drag increases during high solar activity, 

fuel expenditure is expected to be much greater during this period than during low 

solar activity. To best estimate fuel expenditures, both high and low cases must be 

investigated. 

The fuel expenditure for the GRM mission is estimated by fmt determining 

the mass fuel rate of the thrusters and the total thruster-on time during one complete 

orbital revolution about Earth. Then assuming that fuel consumption will be nearly 

constant through the entire six month mission, the fuel expended per orbit is 

multiplied by the number of orbital revolutions at the end of six months. 

The mass fuel rate of the thrusters when fired is 
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where F k s t  is 

(4.25) 

the total thrust produced by the aft thrusters, g, is the Earth's 

gravity at the surface and Isp is the specific impulse of the fuel. With an Isp of 200 

seconds and FThrust of 16 Newtons (g, = 9.81 m/s2), the fuel mass rate is 

0.008 1633 kg/s. 

The fuel expenditure for the entire six month mission can be estimated by 

for one orbital using the above algorithm to fmd the total thruster-on time, 

revolution about Earth. The fuel expended per orbit, is then 

(4.26) 

and the mission fuel expenditure can be estimated by noting that the six month 

mission requires approximately 2953 revolutions about Earth. 

As listed in Tables 4.6 and 4.7, thruster on-times varied between 75.5 to 105 

milliseconds during high solar activity, and between 58.9 to 81.8 milliseconds 

during low activity. The number of firings per orbit rose from 423 during the 

beginning of the mission to 583 firings near the end for the high solar activity case 

and from 395 to 543 firings during the low activity. However, the total on-time per 

orbit from beginning to end of the mission was nearly constant at approximately 

43.8 sec during high solar activity and 31.7 sec for low activity. The idea that the 

fuel expended per orbit is independent of the amount of fuel left in the tanks was 

proven by observing the values of fuel expended per orbit listed in Tables 4.6 and 

4.7. Here, the fuel expended per orbit was also nearly constant at 0.357 kg/orbit 

during high solar activity and 0.256 kg/orbit for low activity. Finally, with 
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approximately 2953 orbital revolutions, fuel expenditure estimates of 763 and 1056 

kilograms of hydrazine (as listed in Tables 4.6 and 4.7) were determined, 

respectively during the low and high solar activities. 

These fuel expenditures were compared with other published GRM fuel 

expenditure estimates. According to Ray and Jenkins [1982], their DISCOS 
simulation resulted in a cycle time of 10-20 seconds and about two million fuings 

for the six month mission. Using a totally diffuse reflection drag model for worst 

case estimates, their simulations estimated the fuel expenditure for a seven month 

mission to be approximately 1150 kg giving 2.6 million N-sec of total impulse to 

counteract drag. This corresponds to nearly 986 kg of hydrazine for a six month 

mission if the fuel consumption rate was constant during entire mission. Their 

optimistic fuel estimate used only purely specular reflection and required 660 kg for 

seven months which would correspond to 566 kg for six months. According to 

Keating et al ,  [1986], the Goddard Space Flight Center's Flight Dynamics 

Division determined the 180 day (six month) mission would require approximately 

1051 kg of hydrazine using worst case assumptions such as high solar activity. 

Table 4.8 lists the worst and best case fuel expenditures of each study. It 

shows that the results of this report were reasonably close when compared to the 

other studies; the results were 0.5% greater than Keating et al, [ 19861 and 7.0% 

greater than Ray and Jenkins [ 19821 for the worst case, and 35% greater than Ray 

and Jenkins [ 19821 for the best case. 
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- 
Imparted velocity -0.30795 mmls 

No. of firiogslorbit 423 

No. of firingsl6 month mission 1.25 million 

Fuel expendedorbit 0.35749 kg 

Sir month fuel expenditure 1055.7 kg 

Maximum thrust time 105.01 msec 

Minimum thrust time 104.06 msec 

Maximum coast time 19.392 sec 

Minimum coast time 7.591 sec 

Total thrust timelorbit 43.793 sec 

Maximum estimated drag magnitude 86.140 pm/s2 

Minimum estimated drag magnitude 31.781 pm/s2 

- 
-0,35244 mmls 

484 

1.43 million 

0.35741 kg 

1055.5 kg 

91.76 msec 

90.93 msec 

16.942 sec 

6.248 see 

43.783 see 

112.82 pm/s2 

41.624 pm/s2  

- 
-0.43695 mmls 

583 

1.72 million 

0.35767 kg 

1056.3 kg 

76.24 msec 

75.53 msec 

14.075 see 

5.347 sec 

43.815 see 

163.44 pmls2  

60.302 pmls2  
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Imparted velocity 

No. of firingslorbit 

No. of firingsl6 month mission 

Fuel expended/orbit 

Six month fuel expenditure 

Maximum thrust time 

Minimum tbrust time 

Maximum coast time 

Minimum coast time 

Total thrust timelorbit 

Maximum estimated drag magnitude 

Minimum estimated drag magnitude 

-0.23957 mmls 

395 

1.17 million 

0.25839 kg 

763.07 kg 

81.84 msec 

81.19 msec 

24.959 see 

7.058 see 

31.653 see 

67.889 pmls2  

19.192 pmls2 

-0,27417 mmls 

451 

1.33 million 

0.25850 kg 

763.39 kg 

71.51 msec 

69.94 msec 

21.813 sec 

6.167 sec 

31.667 sec 

88.916 pm/s2 

25.136 pm/s2 

-0.32999 mmls 

543 

1.60 million 

0.25857 kg 

763.60 kg 

59.42 msec 

58.94 msec 

18.134 see 

5.123 sec 

31.675 sec 

128.81 pmls2 

36.416 pmls2  

ble 4.8 Co-ons of Fuel F- . .  

Worst Case 1056 kg 1051 kg 986 kg 

Best Case 763 kg N.A. 566 kg 
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Figure 4.3 Along-track phase plane limit cycle, Ray & Jenkins, [ 198 11. 
. ... - 

Figure 4.4 Cross-track phase plane limit cycle, Ray & Jenkins, [1981]. 
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Figure 4.5 The Vector representing the Proof Mass 
with respect to the Outer Satellite 
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Figure 4.6 Solar flux data in 1Oe-22 watts/m**2/cycles/sec bandwidth. 
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Figure 4.7 The Geomagnetic Planetary Index 
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Figure 4.9 Predicted latitudinal atmospheric density variation for the 
summer solistice of 1996 at GRM altitudes. 
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Figure 4.10 Predicted drag profiles along 2 GRM (160km) orbits on the 
vernal equinox of 1991 (high solar activity). 
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Figure 4.1 1 Predicted drag profiles along 2 GRM (160km) orbits on the 
summer solistice of 1996 (low solar activity). 
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4.12 Predicted drag profiles along 2 GRh4 (160km) orbits on the 
vernal equinox of 1991 (high solar activity). 
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Figure 4.13 Predicted drag profiles along 2 GRh4 (160km) orbits on the 
summer solistice of 1996 (low solar activity). 
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Figure 4.14 Predicted drag profiles along 2 GRM (160km) orbits on the 
vernal equinox of 1991 (high solar activity). 
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Figure 4.15 Predicted drag profiles along 2 GRM (16Okm) orbits on the 
summer solistice of 1996 (low solar activity). 
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Figure 4.16 Aerodynamic lift force generated by 
the Ball Centering Control Law. 
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Figure 4.17 Aerodynamic sideslip force generated by 
the Ball Centering Control Law. 
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Fimre 4.181a Along-track position of proof mass with respect to spacecraft's 

centroid against time for one orbit during high solar activity with 95% fuel onboard. 
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F i m e  4.18-b Along-track position of proof mass with respect to spacecraft's 

centroid against time for one orbit during high solar activity with 50% fuel onboard. 
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Figure 4.18-c Along-track position of proof mass with respect to spacecraft's 

centroid against time for one orbit during high solar activity with 5% fuel onboard. 
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Emre 4.1.9-a Along-track position of proof mass with respect to spacecraft's 

centroid against time for one orbit during low solar activity with 95% fuel onboard. 
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Figure 4.19-b Along-track position of proof mass with respect to spacecraft's 

centroid against time for one orbit during low solar activity with 50% fuel onboard. 
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Fimre 4.19-c Along-track position of proof mass with respect to spacecraft’s 

centroid against time for one orbit during low solar activity with 5% fuel onboard. 
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Figure 4.20-a Radial and cross-track position of proof mass with respect to 

spacecraft's centroid against time for two orbits during high solar activity with 95% 

fuel onboard. 
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Figure 4.20-b Radial and cross-track position of proof mass with respect to 

spacecraft's centroid against time for two orbits during high solar activity with 50% 

fuel onboard. 
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Fipure 4.20-c Radial and cross-track position of proof mass with respect to 

spacecraft's centroid against time for two orbits during high solar activity with 5 %  

fuel onboard. 
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F h r e  4.21-a Radial and cross-track position of proof mass with respect to 

spacecraft's centroid against time for two orbits during low solar activity with 95% 

fuel onboard. 
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Figure 4.21-b Radial and cross-track position of proof mass with respect to 

spacecraft's centroid against time for two orbits during low solar activity with 50% 

fuel onboard. 
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Eigure 4.21-c Radial and cross-track position of proof mass with respect to 

spacecraft's centroid against time for two orbits during low solar activity with 5% 

fuel onboard. 
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Figure 4.22-a Along-track phase plane limit cycle for one orbit during high solar 

activity with 95% fuel onboard. 
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-re 4.22-b Along-track phase plane limit cycle for one orbit during high solar 

activity with 50% fuel onboard. 
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Figure 4.23-a Along-track phase plane limit cycle for one orbit during low solar 

activity with 95% fuel onboard. 
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Fimre 4.23-b Along-track phase plane limit cycle for one orbit during low solar 

activity with 50% fuel onboard. 
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Fipre 4.24 Radial and cross-track proof mass velocities with respect to the 

spacecraft against time for two orbits during high solar activity with 50% fuel 

onboard. 
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Figure 4.25 Ball-centering attitude control pitch angle against time for two orbits 

during high solar activity with 50% fuel onboard. 
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Figure 4.26 Ball-centering attitude control yaw angle against time for two orbits 

during high solar activity with 50% fuel onboard. 
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Firrure 4.27 Radial phase plane diagram (velocity vs. position) for one orbit during 

high solar activity with 95% fuel onboard. 
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Fimre 4.28 Cross-track phase plane diagram (velocity vs. position) for one orbit 

during high solar activity with 5% fuel onboard. 



CONCLUS IONS 

Presented in the first part of this study are two orbit simulations, one 

representing the actual GRM orbits and the other representing the orbit estimated 

from orbit determination techniques. These orbit simulations are essential for the 

geodetic science community to test gravity evaluation techniques before the GRM 

mission is launched. The second part of this study involved creating a computer 

algorithm to simulate GRM's drag compensation mechanism (DISCOS) so that fuel 

expenditure and proof mass trajectories relative to the spacecraft centroid could be 

calculated for the mission. 

Although the low-low GRM spacecraft configuration was used exclusively, 

the orbit information obtained in this study is applicable to all possible scenarios 

since at least one low satellite will be used. In addition, the drag compensation 

study is also still applicable to a possible change of the design of DISCOS 
mechanism in the low-low scenario to a "two-stage'' design, or the replacement of 

the SST (and elimination of the second satellite) with a gravity gradiometer. 

The two-stage DISCOS and gravity m o m e t e r  take the single stage DISCOS 

and SST a step further by eliminating the need for post flight proof mass velocity 

reconstruction since measurements taken by these instruments are always taken 

about the proof mass centroid. The two-stage DISCOS system incorporates an 

intermediate stage that is equipped with the SST antennae and is magnetically forced 

to follow the proof mass constantly while the outer stage uses the same concept as 

performed in this study to follow the intermediate stage by firing appropriate 
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thrusters to compensate'for drag. The gravity gradiometer uses a set of high 

precision accelerometers whose measurements would replace the range rate 

measurements from the SST for the determination of the higher degree and order 

terms of the geopotential. 

5.1 Summarv 

With a geopotential of degree and order 360, the 32 day true orbit simulation 

of the two GRM spacecrafts' proof masses required a total of 19.2 hours of CPU 

time on the Cray X-MP/24 supercomputer, nearly 100 times faster than on any 

conventional mainframes computers. The initial conditions determined by White 

[ 19871 satisfied the requirement that the orbit repeat after exactly 32 sidereal days 

The orbit determination solution discussed here merely indicates some of the 

major points that must be considered when solving for the nominal trajectory. It 

was shown that the orbit can be determined within the 30 accuracy requirement of 

100 meters in the radial and 300 meters in the along- and cross-track directions for 

the gravity mission. The magnetic mission requirements of 60 meters radial and 100 

meters in the along- and cross-track components could not be met with this 

solution; however the nominal orbit simulation will be used to further improve 

gravity models so that eventually the residuals will meet the magnetic mission 

requirements. 

The one-way Doppler algorithm, created for the SST simulation, rarely did 

not converge for measurements received by satellite two's antenna, and the latest 

measurements calculated during these non-convergences did not meet the 1 pm/s 

requirement. Much effort went into finding the cause of this iteration problem, but 

the problem was never solved completely. It was finally thought to be due to 
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round-off errors occurring during the interpolation of the ephemeris between the 

recorded time points. 

The results of the GRM DISCOS simulation demonstrated that the spacecraft 

can essentially be "drag-free", that is, the spacecraft can be made to follow the 

purely gravitational trajectory of the proof mass. The results showed that the 

centroid of the spacecraft can be controlled so that it will not deviate more than 1.0 

mm in any direction from the centroid of the proof mass. 

Radial and cross-track proof mass excursions were shown to be constrained 

within the k1.0 mm region without fuing radial or cross-track thrusters, but with 

the use of the ball-centering attitude control law which pitches or yaws the 

Spacecraft at slight angles to produce counteracting lift or sideslip forces. 

The aft along-track thrusters were determined to fire for 55 to 105 

milliseconds every 5 to 25 seconds depending on drag magnitudes and the current 

satellite mass. The total number of aft thruster firings ranged from 1.2 to 1.7 

million. Total thrust-on times, and thus fuel expenditure rates, were essentially 

independent of the variation in mass due to fuel consumption for either the high 

solar or low solar activity case. It was also shown that estimated fuel expenditures 

of 763 to 1056 kg of hydrazine for drag compensation compared closely to other 

studies. 

k 

5.2 Future Study 

Now that both a representation of the proof mass orbit trajectories and a way 

of simulating the drag compensation mechanism exists, the simulation of the outer 

satellites' orbits can be determined. Proof mass displacements from the satellites' 
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mass centers corrupt the SST range-rate measurements, thus the outer satellite orbit 

simulation will incorporate this source of error thereby allowing precise calculations 

of the SST range-rate measurements. 

Many refinements and improvements are needed to improve the drag-fiee 

thruster control algorithm. To fully simulate the DISCOS mechanism, adaptive 

control laws should be implemented to provide coasting arcs of nearly constant 

duration. An algorithm to adjust the thruster turn-off switches (imparted relative 

velocities) according to the magnitude of drag and satellite mass is needed since 

either too small or too large limit cycles would result if this parameter is held 

constant throughout the mission. This would require aft thrusters to fm frequently 

or fore thrusters to fue occasionally, thus increasing fuel consumption. It was not 

clear from previous reports that this point has been studied. 

The Jacchia 1971 atmospheric model used in this simulation was also slightly 

outdated. A more current one, such as the Jacchia 1977 atmospheric model should 

be incorporated into the study. In addition, the drag model used in this study did 

not take into account the effects due to complicated atmospheric gas impingements 

and reflections. Also, a detailed model of the satellite's surface area incident to the 

airstream is needed since the incidental area (frontal area) used in this study was 

held constant and radial and cross-track drag components were determined from 

this value. 

Finally, the inclusion of a fuel expenditure algorithm into the DISCOS 

simulation is needed to better calculate fuel expenditures. Longer simulations 

(greater than one orbit ) would further improve these calculations. 
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